首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3693篇
  免费   376篇
  国内免费   218篇
  2023年   66篇
  2022年   80篇
  2021年   85篇
  2020年   111篇
  2019年   115篇
  2018年   126篇
  2017年   125篇
  2016年   183篇
  2015年   159篇
  2014年   217篇
  2013年   247篇
  2012年   120篇
  2011年   152篇
  2010年   110篇
  2009年   198篇
  2008年   221篇
  2007年   240篇
  2006年   209篇
  2005年   162篇
  2004年   129篇
  2003年   105篇
  2002年   98篇
  2001年   80篇
  2000年   85篇
  1999年   72篇
  1998年   65篇
  1997年   40篇
  1996年   76篇
  1995年   62篇
  1994年   61篇
  1993年   41篇
  1992年   40篇
  1991年   30篇
  1990年   39篇
  1989年   26篇
  1988年   36篇
  1987年   27篇
  1986年   22篇
  1985年   26篇
  1984年   36篇
  1983年   18篇
  1982年   16篇
  1981年   21篇
  1980年   29篇
  1979年   13篇
  1978年   8篇
  1977年   11篇
  1976年   14篇
  1973年   11篇
  1972年   7篇
排序方式: 共有4287条查询结果,搜索用时 151 毫秒
1.
This paper addresses the use of impact indicators with respect to climate change in the 2007–2013 Rural Development Programme (RDP) of the European Union, with particular reference to the Scotland Rural Development Programme (SRDP). It concludes that the policy context has highlighted the need for the rural land use sector to respond to climate change but that the associated Common Monitoring and Evaluation Framework (CMEF) did not develop suitable indicators to assess the impact of SDRP measures on GHG emission mitigation. It suggests improved impact indicators based on the relationship between rural land use and greenhouse gas (GHG) emissions: first, an indicator based on net GHG emissions per holding; and a second based on net GHG emissions per unit volume of output. The paper points out the challenges in measuring land-based emissions accurately. It further proposes screening of RDP measures to ensure that climate change mitigation impacts are properly appraised. It is recognised that climate change policy in relation to rural land use is still at an early stage of development but greater sophistication of policy instrument design and evaluation will be required if the RDP is to contribute significantly to climate change policy objectives.  相似文献   
2.
Prospective life cycle assessment (LCA) needs to deal with the large epistemological uncertainty about the future to support more robust future environmental impact assessments of technologies. This study proposes a novel approach that systematically changes the background processes in a prospective LCA based on scenarios of an integrated assessment model (IAM), the IMAGE model. Consistent worldwide scenarios from IMAGE are evaluated in the life cycle inventory using ecoinvent v3.3. To test the approach, only the electricity sector was changed in a prospective LCA of an internal combustion engine vehicle (ICEV) and an electric vehicle (EV) using six baseline and mitigation climate scenarios until 2050. This case study shows that changes in the electricity background can be very important for the environmental impacts of EV. Also, the approach demonstrates that the relative environmental performance of EV and ICEV over time is more complex and multifaceted than previously assumed. Uncertainty due to future developments manifests in different impacts depending on the product (EV or ICEV), the impact category, and the scenario and year considered. More robust prospective LCAs can be achieved, particularly for emerging technologies, by expanding this approach to other economic sectors beyond electricity background changes and mobility applications as well as by including uncertainty and changes in foreground parameters. A more systematic and structured composition of future inventory databases driven by IAM scenarios helps to acknowledge epistemological uncertainty and to increase the temporal consistency of foreground and background systems in LCAs of emerging technologies.  相似文献   
3.
Growth divergence – i.e. the expression of divergent growth trends of neighboring trees – has certain implications for dendrochronological research, for instance in the context of climate reconstructions but also in terms of estimating net ecosystem productivity. Thus, understanding the underlying mechanisms is essential to extend our fundamental dendroecological knowledge. In this context, the Picea genus plays an important role since several of its species were reported to exhibit growth divergence. Here, we investigate a well sampled Norway spruce (Picea abies (L.) Karst) data set for growth divergence comprising ring-width and Blue Intensity measurements from seven sites on Babia Góra Mountain, at the border between Poland and Slovakia. By means of Principal Component Gradient Analysis, inter-series correlations, and climate growth relationships, we are able to show that I) Norway spruce on Babia Góra expressed growth divergence since the 1970s, II) the definition of groups increased the strength of population signals and the stability of climate-growth relationships, and III) Blue Intensity appeared as a more robust proxy for environmental conditions. We discuss soil heterogeneity, genetics, and air pollution as possible underlying mechanisms, thereby indicating further research avenues to obtain a better understanding of growth divergence.  相似文献   
4.
《Geobios》2014,47(5):305-313
An increasingly important source of annually resolved palaeoenvironmental proxy data originates from cross-dated incremental chronologies summarizing the shell growth of several individuals. Here, we have analysed annual increment variations in a collection of radiocarbon-dated shells of ocean quahog (Arctica islandica) from early Holocene prodelta deposits in north Norway. Radiocarbon dating of the shell material showed that the increments were formed contemporaneously during Preboreal times. The biologically youngest shell contains 35 annual increments, whereas the oldest shell shows 169 increments. Time-series of annual increments demonstrated clear age trends with the widest increments during the very early years of bivalve life, followed by a notable decline in increment widths as the bivalves aged. Subsequent to removing these biological trends from the series, a sclerochronological cross-dating was carried out and resolved the temporal alignments of the shell growth increment records relative to each other. The resulting shell growth increment chronology evidences vigorous growth variations. Spectral analysis of the chronology revealed 3.7- and 4.3-year periodicities, indicative of Preboreal environmental oscillations. Periodicities of longer period were not detected. Our results prove the value of radiocarbon-dated shell assemblages to build “floating” geochronologies for periods and regions where dead shells from museum collections or seabed are not obtainable. Increasing constructions of such chronologies enhance the potential of sclerochronological cross-dating of annual shell growth increment chronologies to depict and detail annually-resolved climate variability not only for late Holocene, as previously illustrated, but also for early Holocene times, when large-scale oscillations punctuated the global climate dynamics. Development of longer chronologies with higher sample replication remains an attainable interdisciplinary target.  相似文献   
5.
Abstract. Due to the complexity of coastal barrier vegetation, it is useful to apply a functional-type approach to assess the response of barrier island vegetation to climate change. In this paper, a simple clustering analysis is applied to a group of 19 plant associations, based on six plant attributes and six environmental constraints. This analysis results in the suggestion that the main division of the vegetation types at Virginia Coast Reserve is between herbaceous and woody types, which differs from the existing classification which recognizes three groups: xeric-mesic herbaceous, woody and hydric-halophytic herbaceous. Considerations about grouping plant functional types are also addressed in this paper. At a global scale, inclusion of barrier plant functional types may not be so important for the climate-change response of vegetation, but it may be necessary to consider these important systems for spatially explicit modelling of landscape responses.  相似文献   
6.
中国梧桐属(Firmiana)在世界梧桐属中占比较大,且除梧桐外其余种均为中国特有且分布范围狭窄的植物种,灭绝风险大,研究气候变化对中国梧桐属树种的影响对于维护生物多样性具有重要的意义。结合多时期第六次国际气候耦合模式比较计划(CMIP6)气候变量数据和中国八种梧桐属树种的分布数据,基于R语言kuenm程序包优化的最大熵(Maxent)模型模拟分析中国八种梧桐属树种在多尺度下的潜在适生区,得出梧桐属最适宜的模拟尺度、潜在适生区的面积变化和迁移方向、梧桐属多样性保护关键区域及保护空缺。结果表明:(1)梧桐属最适宜的模拟尺度为亚洲;(2) Maxent模型的接收者操作特征曲线下面积(AUC)值均大于0.9,表明模型对梧桐属潜在适生区预测结果具有较高准确度;(3)气候变化影响下除云南梧桐(Firmiana major)外其它树种的潜在适生区都将在未来有所扩大;(4)中国八种梧桐属树种潜在适生区迁移方向主要为东西向,南北向大跨度迁移较少,纬度变化不大;(5)丹霞梧桐(Firmiana danxiaensis)的稳定潜在适生区最小;(6)中国梧桐属多样性保护关键区域主要分布于广西壮族自治区及云南、广东、海南等省区;(7)中国梧桐属多样性保护空缺区域主要分布于广西壮族自治区中部及海南省北部;(8)梧桐属多样性保护关键区域正在为人造地表所侵蚀。研究分析气候变化对中国八种梧桐属树种的影响及其潜在适生区变化、中国梧桐属多样性保护状态,可为中国梧桐属建立多样性保护廊道提供相关建议,为制定多样性保护规划及相应措施提供参考。  相似文献   
7.
Habitat management under the auspices of conservation biological control is a widely used approach to foster conditions that ensure a diversity of predator species can persist spatially and temporally within agricultural landscapes in order to control their prey (pest) species. However, an emerging new factor, global climate change, has the potential to disrupt existing conservation biological control programs. Climate change may alter abiotic conditions such as temperature, precipitation, humidity and wind that in turn could alter the life-cycle timing of predator and prey species and the behavioral nature and strength of their interactions. Anticipating how climate change will affect predator and prey communities represents an important research challenge. We present a conceptual framework—the habitat domain concept—that is useful for understanding contingencies in the nature of predator diversity effects on prey based on predator and prey spatial movement in their habitat. We illustrate how this framework can be used to forecast whether biological control by predators will become more effective or become disrupted due to changing climate. We discuss how changes in predator–prey interactions are contingent on the tolerances of predators and prey species to changing abiotic conditions as determined by the degree of local adaptation and phenotypic plasticity exhibited by species populations. We conclude by discussing research approaches that are needed to help adjust conservation biological control management to deal with a climate future.  相似文献   
8.
  • The study of climate‐driven effects on seed traits such as germination has gained momentum over the past decade as the impact of global warming becomes more apparent on the health and survival of plant diversity.
  • Seed response to warming was evaluated in a suite of short‐range endemic species from the biodiverse Greenstone Belt of southern Western Australia. The temperature dimensions for germination in 20 woody perennials were identified using small unreplicated samples over 6 weeks on a temperature gradient plate (constant and fluctuating temperatures between 5 and 40 °C). These data were subsequently modelled against current and forecast (2070) mean monthly minimum and maximum temperatures to illustrate seasonal changes to germination timing and final percentage germination.
  • All but one species attained full germination in at least one cell on the gradient plate. Modelling of the data suggested only minimal changes to percentage germination despite a forecast rise in diurnal temperatures over the next 50 years. Nine species were predicted to experience declines of between <1% and 7%, whilst 11 species were predicted to increase their germination by <1% to 3%. Overall, the speed of germination is predicted to increase but the timing of germination for most species shifts seasonally (both advances and delays) as a result of changing diurnal temperatures.
  • The capacity of this suite of species to cope with warmer temperatures during a critical early life stage shows a degree of adaptation to heterogeneous environments. Predicting the effects of global change on terrestrial plant communities is crucial to managing and conserving plant diversity.
  相似文献   
9.
Due to wide spatial distribution, high annual resolution, calendar-exact dating, and high climate sensitivity, tree-rings play an important role in reconstructing past environment and climate change over the past millennium at regional, hemispheric or even global scales, so tree-rings can help us to better understand climate behaviour and its mechanisms in the past and then predict variation trends for the future. In this paper, we will review latest advances in tree-ring-based climate reconstructions in China and their applications in modelling past local/regional climate change, capturing historical climatic extreme events, as well as analyzing their link to large-scale climate patterns.  相似文献   
10.
Climatic change and its ecological implications at a subantarctic island   总被引:7,自引:0,他引:7  
Summary Marion Island (47°S, 38°E) has one of the most oceanic climates on earth, with consistently low air temperatures, high precipitation, constantly high humidity, and low incident radiation. Since 1968 mean surface air temperature has increased significantly, by 0.025° C year–1. This was strongly associated with corresponding changes in sea surface temperature but only weakly, or not at all, with variations in radiation and precipitation. We suggest that changing sealevel (atmospheric and oceanic) circulation patterns in the region underlie all of these changes. Sub-Antarctic terrestrial ecosystems are characterized by being species-poor and having a simple trophic structure. Marion Island is no exception and a scenario is presented of the implications of climatic change for the structure and functioning of its ecosystem. Primary production on the island is high and consequently the vegetation has a large annual requirement for nutrients. There are no macroherbivores and even the insects play only a small role as herbivores, so most of the energy and nutrients incorporated in primary production go through a detritus, rather than grazing, cycle. Ameliorating temperatures and increasing CO2 levels are expected to increase productivity and nutrient demand even further. However, most of the plant communities occur on soils which have especially low available levels of nutrients and nutrient mineralization from organic reserves is the main bottleneck in nutrient cycling and primary production. Increasing temperatures will not significantly enhance microbially-mediated mineralization rates since soil microbiological processes on the island are strongly limited by waterlogging, rather than by temperature. The island supports large numbers of soil macro-arthropods, which are responsible for most of the nutrient release from peat and litter. The activities of these animals are strongly temperature dependent and increasing temperature will result in enhanced nutrient availability, allowing the potential for increased primary production due to elevated temperature and CO2 levels to be realized. However, housemice occur on the island and have an important influence on the ecosystem, mainly by feeding on soil invertebrates. The mouse population is strongly temperature-limited and appears to be increasing, possibly as a result of ameliorating temperatures. We suggest that an increasing mouse population, through enhanced predation pressure on soil invertebrates, will decrease overall rates of nutrient cycling and cause imbalances between primary production and decomposition. This, along with more direct effects of mice (e.g. granivory) has important implications for vegetation succession and ecosystem structure and functioning on the island. Some of these are already apparent from comparisons with nearby Prince Edward Island where mice do not occur. Other implications of climatic change for the island are presented which emphasize the very marked influences that invasive organisms have on ecosystem structure and functioning. We suggest that changing sealevel circulation patterns, by allowing opportunities for colonization by new biota, may have an even more important influence on terrestrial sub-Antarctic ecosystems than is suggested merely on the basis of associated changes in temperature or precipitation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号